B Math Algebra II

100 Points

Notes.

- (a) Justify all your steps.
- (b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (c) By default, F denotes a field.
- 1. [30 points] Let A denote the matrix

$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

- (i) Find the characteristic polynomial, the eigenvalues and a basis of \mathbb{R}^3 consisting of eigenvectors of A.
- (ii) Find an invertible 3×3 matrix X such that XAX^{-1} is a diagonal matrix and verify by explicitly multiplying out that XAX^{-1} is indeed diagonal.
- (iii) Using (ii) or otherwise calculate A^{100} .
- (iv) Find the minimal polynomial of A.
- 2. [16 points] Let v_1, \ldots, v_r be an orthonormal set of vectors in \mathbb{R}^n .
 - (i) Prove that there exists a matrix $A \in O_n(\mathbb{R})$ such that the *i*-th column of A is v_i .
 - (ii) If w_1, \ldots, w_r is another orthonormal set of vectors in \mathbb{R}^n , prove that there is a matrix $B \in O_n(\mathbb{R})$ such that $Bw_i = v_i$.
- 3. [16 points] Let $T: V \to W$ be a linear map where V, W are finite dimensional vector spaces. (i) Define rank(T) and Nullity(T).
 - (i) Define $\operatorname{rank}(T)$ and $\operatorname{Numby}(T)$.
 - (ii) Prove that $\operatorname{rank}(T) + \operatorname{Nullity}(T) = \dim(V)$.

4. [12 points] Prove or Disprove:

For all possible choices for every entry *, the two matrices A and B are similar.

$$A = \begin{pmatrix} 1 & * & * & * \\ 0 & 2 & * & * \\ 0 & 0 & 3 & * \\ 0 & 0 & 0 & 4 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 4 & 0 & 0 & 0 \\ * & 3 & 0 & 0 \\ * & * & 2 & 0 \\ * & * & * & 1 \end{pmatrix}$$

- 5. **[16 points]**
 - (i) Let A be a normal matrix. Prove that if $Av = \lambda v$ then $A^*v = \overline{\lambda}v$.
 - (ii) Let A be a Hermitian symmetric matrix. Prove that every eigenvalue of A is real.

6. [10 points] Prove that every element of $SO_2(\mathbb{R})$ corresponds to a rotation in \mathbb{R}^2 .